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Purpose and goal

Predicting with confidence

• Conformal prediction provides guarantees for your predictions!
• There is absolutely no magic involved - only mathematics!
• Hot topic - recently picked up by both academia and industry
• Plenty of open questions, i.e., research opportunities
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Purpose and goal

Predicting with confidence

• I find conformal prediction to be extremely powerful, yet very straightforward to use
• My overall ambition with this tutorial is to introduce conformal prediction while
trying to convey its potential

• In my opinion - Conformal prediction will soon be part of the standard toolbox for a
data scientist

• So - maybe you can use it off-the-shelf...
• ...or even be part of the small but growing conformal society
• Disclaimer: I come from machine learning not algorithmic theory...
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Motivating Example

How good is your prediction?
You want to estimate the risk of cancer recurrence in patient xk+1
To your disposal, you have:

1. A set of historical observations (x1, y1), . . . , (xk, yk)
• xi describes a patient by age, tumor size, etc
• yi is a measurement of cancer recurrence in patient xi

2. Some machine learning (classification or regression) algorithm
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Motivating Example

import pandas as pd

breast_cancer = pd.read_csv('./data/breast-cancer.csv')

# (x_1, y_1), ...., (x_k, y_k)
x_train = breast_cancer.values[:-1, :-1]
y_train = breast_cancer.values[:-1, -1]

# (x_k+1, y_k+1)
x_test = breast_cancer.values[-1, :-1]
y_test = breast_cancer.values[-1, -1]
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Motivating Example

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train, y_train)

print(knn.predict(x_test))
print(knn.predict_proba(x_test))

['no-recurrence-events']
[[ 0.8 0.2 ]]
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Motivating Example

How good is your prediction, really?

• Your classifier says that the patient will have no recurrence events.
Is it right?

• Your probability estimator says it’s 80% likely that the patient won’t have a
recurrence event.
How good is the estimate?

• Your regression model says the patient should have 0.4 recurrence events in the
future.
How close is that to the true value?

Will you trust your model?
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Motivating Example

The simple answer:
We expect past performance to indicate future performance.

• The model is 71% accurate on the test data,
so we assume it’s accurate for 71% of production data.

• The model has an AUC of 0.65 on the test data,
so we assume it has an AUC of 0.65 on production data.

• The model has an RMSE of 0.8 on the test data,
so we assume it has an RMSE of 0.8 on production data.

But...
How good are these estimates? Do we have any guarantees? Specifically, what about
patient xk+1? What performance should we expect from the model for this particular
instance?

8



Motivating Example

The simple answer:
We expect past performance to indicate future performance.

• The model is 71% accurate on the test data,
so we assume it’s accurate for 71% of production data.

• The model has an AUC of 0.65 on the test data,
so we assume it has an AUC of 0.65 on production data.

• The model has an RMSE of 0.8 on the test data,
so we assume it has an RMSE of 0.8 on production data.

But...
How good are these estimates? Do we have any guarantees? Specifically, what about
patient xk+1? What performance should we expect from the model for this particular
instance?

8



Motivating Example

The simple answer:
We expect past performance to indicate future performance.

• The model is 71% accurate on the test data,
so we assume it’s accurate for 71% of production data.

• The model has an AUC of 0.65 on the test data,
so we assume it has an AUC of 0.65 on production data.

• The model has an RMSE of 0.8 on the test data,
so we assume it has an RMSE of 0.8 on production data.

But...
How good are these estimates? Do we have any guarantees? Specifically, what about
patient xk+1? What performance should we expect from the model for this particular
instance?

8



Tentative Solutions

We can use PAC (probably approximately correct) theory.
Gives us valid error bounds for the model.

But...

• Bounds are on model-level — don’t consider whether instance is “easy” or “hard”.
• Bounds tend to be large1.

1I. Nouretdinov, V. Vovk, M. Vyugin, and A. Gammerman, “Pattern recognition and density estimation under the
general i.i.d. assumption,” in Computational Learning Theory, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2001, vol. 2111, pp. 337–353
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Tentative Solutions

We can use Bayesian learning.
Gives us calibrated error bounds on a per-instance basis.

But...

• Only if we know the prior probabilities2.

2H. Papadopoulos, V. Vovk, and A. Gammerman, “Regression conformal prediction with nearest neighbours,”
Journal of Artificial Intelligence Research, vol. 40, no. 1, pp. 815–840, 2011
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A Third Approach

We can use Conformal Prediction.

• Individual probabilities/error bounds per instance.
• Probabilities are well-calibrated: 80% means 80%.
• We don’t need to know the priors.
• We make a single assumption — exchangeability (∼ i.i.d.)
• We can apply it to any machine learning algorithm.
• It’s rigorously proven and simple to implement!
• Developed by Vladimir Vovk, Alex Gammerman & Glenn Shafer.3

3V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world. Springer, 2005
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Conformal prediction: intuition

Some intuition
Assume we have

• Some distribution Z : X× Y generating examples
• Some function f(z) → R
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Conformal prediction: intuition

Some intuition

• Apply f(z) to some, say 4, examples from Z
• Call the resulting scores α1, α2, α3, α4.

• For simplicity, α1 ≤ α2 ≤ α3 ≤ α4

α1 α2 α3 α4

13



Conformal prediction: intuition

Some intuition
If we draw new examples from Z, and apply f(z) to them

• Given that all examples are exchangeable,
• we can estimate distribution of scores, relative to α1, ..., α4

20% 20% 20% 20% 20%
α1 α2 α3 α4

P [f(z) ≤ α3] = 0.6
P [f(z) ≤ α4] = 0.8
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Conformal prediction: intuition

Some intuition
Let f(zi) = |yi − h(xi)|

where h is a regression model trained on the domain of Z.
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Conformal prediction: intuition

Some intuition
We know (xi, yi) for all examples that generated α1, ..., α4,
i.e., we can obtain values for α1, ..., α4.

20% 20% 20% 20% 20%
0.03 0.07 0.11 0.13

P [|yi − h(xi)| ≤ 0.11] = 0.6
P [|yi − h(xi)| ≤ 0.13] = 0.8
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Conformal prediction: intuition

Some intuition
For a novel example, where we know xi but not yi, we still know that

P [|yi − h(xi)| ≤ 0.11] = 0.6
P [|yi − h(xi)| ≤ 0.13] = 0.8

and can obtain h(xi) from our regression model, e.g. h(xi) = 0.3.

20% 20% 20% 20% 20%
0.03 0.07 0.11 0.13

P [|yi − 0.3| ≤ 0.11] = 0.6
P [|yi − 0.3| ≤ 0.13] = 0.8

P [yi ∈ 0.3± 0.11] = 0.6
P [yi ∈ 0.3± 0.13] = 0.8

This is actually exactly how conformal regression works!
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Conformal prediction at a glance

When does conformal prediction work?
We already noted a few things:

• Training data and test data belong to the same distribution (they are identically
distributed)

• Choice of f(z) is irrelevant (w.r.t. validity), as long as it is symmetric (training patterns
and test patterns are treated equally)

18



Conformal prediction at a glance

Conformal predictors output multi-valued prediction regions

• Sets of labels or real-valued intervals

Given

• a test pattern xi, and
• a significance level ϵ

A conformal predictor outputs

• A prediction region Γϵi that contains yi with probability 1− ϵ

19



Conformal prediction at a glance

Yc = {iris_setosa, iris_versicolor, iris_virginica}
Yr = R

20



Conformal prediction at a glance

Point predictions

hc(xk+1) = iris_setosa
hc(xk+2) = iris_versicolor
hc(xk+3) = iris_virginica

hr(xk+1) = 0.3
hr(xk+2) = 0.2
hr(xk+3) = 0.6

P[yi = hc(xi)] = ?

∆[yi,hr(xi)] = ?
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Conformal prediction at a glance

Prediction regions

hc(xk+1) = {iris_setosa}
hc(xk+2) = {iris_setosa, iris_versicolor}
hc(xk+3) = {iris_setosa, iris_versicolor, iris_virginica}

hr(xk+1) = [0.2, 0.4]
hr(xk+2) = [0, 0.5]
hr(xk+3) = [0.5, 0.7]

P[yi ∈ hc(xi)] = 1− ϵ

P[yi ∈ hr(xi)] = 1− ϵ
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Conformal prediction at a glance
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Conformal prediction at a glance

To perform conformal prediction, we need

• A function f(z) → R

• A set of training examples, Zk ⊂ Z : Xn × Y
• A statistical test

Overall rationale

1. Apply f(z) to training examples in Zk, estimate distribution of f(z) ∼ Q
2. For every possible output ỹ ∈ Y, apply f(z) to (xk+1, ỹ)
3. Reject ỹ if it appears unlikely that f[(xk+1, ỹ)] ∼ Q

23



Conformal prediction at a glance

The function f(z)
We call this the nonconformity function

• A function that measures the “strangeness” of a pattern (xi, yi)
• Any function f(z) → R works (produces valid predictions)

Properties of a good nonconformity function (that produces small prediction sets)

• Give low scores to patterns (xi, yi)
• Give large scores to patterns (xi,¬yi)

Common choice: f(z) = ∆[h(xi), yi]

• h is called the underlying model
• ”Our random forest misclassified this example, it must be weird!”
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Nonconformity functions

Probability estimate for correct class
If the probability estimate for an example’s correct class is low, the example is strange.

Margin of a probability estimating model
If an example’s true class is not clearly separable from other classes, it is strange.

Distance to neighbors with same class (or distance to neighbors with different classes)
If an example is not surrounded by examples that share its label, it is strange.

Absolute error of a regression model
If the prediction is far from the true value, the example is strange.

rand(0, 1)
Even if it’s not useful, it’s still valid.
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Conformal prediction at a glance

Conformal prediction process

1. Define a nonconformity function.
2. Measure the nonconformity of labeled examples (x1, y1), ..., (xk, yk).
3. For a new pattern xi, test all possible outputs ỹ ∈ Y:

3.1 Measure the nonconformity of (xi, ỹ).
3.2 Is (xi, ỹ) particularly nonconforming compared to the training examples? Then ỹ is

probably an incorrect prediction. Otherwise, include it in the prediction region.
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Conformal prediction: formal definition

To determine whether an example is “too nonconforming”, we use a statistical test.

pỹi =

∣∣∣{zj ∈ Z : αj > αỹi

}∣∣∣
k+ 1 + θ

∣∣∣{zj ∈ Z : αj = αỹi

}∣∣∣+ 1
k+ 1 , θ ∼ U [0, 1]

(Portion of examples at least as nonconforming as the tentatively labeled test example)

Prediction region

Γϵi =
{
ỹ ∈ Y : pỹi > ϵ

}

• Classification — known αỹi , find p
ỹ
i

• Regression — known pỹi , find αỹi
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ỹ ∈ Y : pỹi > ϵ
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Types of conformal predictors

Transductive conformal prediction (TCP) — f(z, Z)
Original conformal prediction approach

• Requires retraining model for each new test example
• For regression problems, only certain models (e.g. kNN) can be used as of yet

Inductive conformal prediction (ICP) — f(z)
Revised approach

• Requires model to be trained only once
• Requires that some data is set aside for calibration

• To avoid violating exchangeability assumption

28



Conformal classification



Inductive Conformal Classification

Divide the training set Z into two disjoint subsets
A proper training set Zt
A calibration set Zc where |Zc| = q

Fit a model h using Zt
This is the underlying model

Choose an f(z), e.g. f(zi) = 1− P̂h(yi | xi)
This is the nonconformity function

Apply f(Z) to ∀zi ∈ Zc
Save these calibration scores
We denote these α1, ..., αq
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Inductive Conformal Classification

Apply f(z) to Zc, and obtain a set of calibration scores α1, ..., αq

30



Inductive Conformal Classification

For each ỹ ∈ Y
Let αỹi = f [(xi, ỹ)]

Calculate

pỹi =

∣∣∣{zj ∈ Zc : αj > αỹi

}∣∣∣
q+ 1 + θ

∣∣∣{zj ∈ Zc : αj = αỹi

}∣∣∣+ 1
q+ 1 , θ ∼ U [0, 1]

Fix a significance level ϵ ∈ (0, 1)

Prediction region

Γϵi =
{
ỹ ∈ Y : pỹi > ϵ

}
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Let αỹi = f [(xi, ỹ)]
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Calculate
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}∣∣∣+ 1
q+ 1 , θ ∼ U [0, 1]

Fix a significance level ϵ ∈ (0, 1)

Prediction region

Γϵi =
{
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Inductive Conformal Classification

Choose a significance level ϵ
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Inductive Conformal Classification

Obtain αi using f(z) for each possible class (xi, ỹ1), (xi, ỹ2), (x1, ỹ3), ..., resulting in
αỹ1i , α

ỹ2
i , α

ỹ3
i , ...
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Inductive Conformal Classification

Reject/include based on the p-value statistic, and the chosen ϵ
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Inductive Conformal Classification

Predicting whether a customer will churn or not - a real-world example

• A data set from one of the leading e-retailers in Sweden consisting of altogether
255298 customers.

• The target variable for the analysis is whether the specific customer will churn or
not, i.e., no purchase one year after the previous order.

• Each customer is described using altogether 276 attributes.
• We are not allowed to give a detailed description of all the attributes, but they
include statistics like number of orders, number of visits to the website and whether
the customer has clicked on promotion emails sent by the retailer.
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Inductive Conformal Classification

Predicting whether a customer will churn or not - 16 sample instances

Correct ϵ = 0.2 ϵ = 0.1 ϵ = 0.05 ϵ = 0.01
Churn {Churn} {Churn} {Churn} {Churn}
Loyal {Churn} {Churn} {Loyal, Churn} {Loyal, Churn}
Loyal {} {Loyal} {Loyal} {Loyal}
Churn {Loyal, Churn} {Loyal, Churn} {Loyal, Churn} {Loyal, Churn}
Churn {Churn} {Churn} {Loyal, Churn} {Loyal, Churn}
Churn {Churn} {Churn} {Churn} {Loyal, Churn}
Loyal {Loyal} {Loyal} {Loyal, Churn} {Loyal, Churn}
Churn {Churn} {Churn} {Churn} {Churn}
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Inductive Conformal Classification

Predicting whether a customer will churn or not - overall results

ϵ = 0.2 ϵ = 0.1 ϵ = 0.05 ϵ = 0.01
RF 300
AvgC 1.061 1.334 1.519 1.791
OneC 0.939 0.666 0.481 0.209
Errors 0.202 0.100 0.052 0.010
LogReg
AvgC 1.075 1.347 1.525 1.790
OneC 0.925 0.653 0.475 0.210
Errors 0.199 0.096 0.050 0.011

• For classification, an error is when the correct label is not in the prediction set, i.e.,
for two-class problems incorrect singleton predictions and empty predictions.

• The probability for an error is always the chosen ϵ.
• An obvious and user-controlled trade-off between errors and prediction size

37



Inductive Conformal Classification

Iris, Random Forest
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Conformal regression



Inductive Conformal Regression

Divide the training set Z into two disjoint subsets
A proper training set Zt
A calibration set Zc where |Zc| = q

Fit a model h using Zt
This is the underlying model

Let f(zi) = |yi − h(xi)|
This is the nonconformity function

Apply f(z) to ∀zi ∈ Zc
Save these calibration scores, sorted in descending order
We denote these α1, ..., αq
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Inductive Conformal Regression

Fix a significance level ϵ ∈ (0, 1)
Let s = ⌊ϵ(q+ 1)⌋.

This is the index of the (1− ϵ)-percentile nonconformity score, αs.
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Inductive Conformal Regression

The prediction for a new example is Γϵi = h(xi)± αs

The interval contains yi with probability 1− ϵ

Note
For regression, we can’t enumerate each ỹ ∈ Y, instead we work backwards, i.e., fix the
p-value and then find an appropriate αỹi .

• Hence, our nonconformity function must be (partially) invertible for quick calculation
of intervals
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Inductive Conformal Regression

A sample regression problem - Boston Housing
Attributes:

• CRIM: per capita crime rate by town
• ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
• INDUS: proportion of non-retail business acres per town
• CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
• NOX: nitric oxides concentration (parts per 10 million)
• RM: average number of rooms per dwelling
• AGE: proportion of owner-occupied units built prior to 1940
• DIS: weighted distances to five Boston employment centres
• RAD: index of accessibility to radial highways
• TAX: full-value property-tax rate per $10000
• PTRATIO: pupil-teacher ratio by town
• B: 1000(Bk− 0.63)2 where Bk is the proportion of blacks by town
• LSTAT: % lower status of the population
• Price
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Inductive Conformal Regression

Predicting price - 16 sample instances

ϵ = 0.2 ϵ = 0.1 ϵ = 0.05 ϵ = 0.01
Correct Min Max Min Max Min Max Min Max
10.8 6.7 23.2 2.7 27.3 0.0 31.0 0.0 40.7
14.9 9.9 26.4 5.8 30.4 2.1 34.1 0.0 43.8
12.6 10.4 26.3 6.6 30.1 3.0 33.7 0.0 43.0
14.9 16.8 30.2 13.5 33.5 10.5 36.5 2.6 44.4
19.1 9.2 25.6 5.2 29.6 1.5 33.3 0.0 43.0
20.1 11.7 28.1 7.7 32.1 4.1 35.8 0.0 45.4
19.9 10.2 26.5 6.2 30.5 2.5 34.2 0.0 43.9
23 12.9 29.2 8.9 33.2 5.2 36.9 0.0 46.6
23.7 20.5 36.4 16.7 40.2 13.1 43.8 3.8 53.1
21.8 13.1 28.5 9.4 32.2 6.0 35.7 0.0 44.7
20.6 13.0 29.4 9.0 33.4 5.3 37.1 0.0 46.7
19.1 11.1 27.4 7.1 31.4 3.4 35.1 0.0 44.8
15.2 10.3 26.8 6.3 30.8 2.6 34.5 0.0 44.3
7.0 7.7 24.2 3.6 28.2 0.0 31.9 0.0 41.6
24.5 18.0 23.4 16.6 24.8 15.4 26.0 12.2 29.2
11.9 17.8 24.1 16.3 25.6 14.9 27.1 11.1 30.8
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Inductive Conformal Regression

Overall results

ϵ = 0.2 ϵ = 0.1 ϵ = 0.05 ϵ = 0.01
Errors 0.201 0.090 0.053 0.011
Average interval 10.1 16.0 19.4 32.8

• For regression problems, an error is when the target variable is outside of the
interval.

• The probability for an error is always the chosen ϵ.
• Again an obvious and user-controlled trade-off between errors and prediction size
• This data set is rather small, so the empirical error rates differ slightly from ϵ
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Inductive Conformal Regression

Boston Housing, Random Forest, ϵ = 0.1
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Inductive Conformal Regression

Static prediction interval size
Using f(zi) = |yi − h(xi)| and Γϵi = h(xi)± αs
means each prediction interval has the same size (αs).

But we want individual bounds for each xi...

Normalized nonconformity functions
Normalized nonconformity functions utilize an additional term σi.

f(zi) =
|yi − h(xi)|

σi

σi is an estimate of the difficulty of predicting yi
A common practice is to let σ be predicted by a model, e.g., σi = ∆̂[yi,h(xi)]

The normalized prediction for a new example is Γϵi = h(xi)± αsσi
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Inductive Conformal Regression

Divide the training set Z into two disjoint subsets
A proper training set Zt
A calibration set Zc

Fit a model h using Zt
In addition

• Let Et be the residual errors of h (i.e. the errors that h makes on Zt)
• Fit a model g using Xt × Et

f(zi) =
|yi − h(xi)|
g(xi) + β

β is a sensitivity parameter that determines the impact of normalization

Apply f(z) to ∀zi ∈ Zc
Save these calibration scores, sorted in descending order
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Inductive Conformal Regression

Fix a significance level ϵ ∈ (0, 1)
Let s = ⌊ϵ(q+ 1)⌋
This is the index of the (1− ϵ)-percentile nonconformity score, αs.

Prediction region
The prediction for a new example is Γϵi = h(xi)± αs(g(xi) + β)

Interval contains yi with probability 1− ϵ

Effects of normalization
Normalization produces more specific (individualized) predictions.

The intervals tend to be tighter, on average, when using normalization.
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Inductive Conformal Regression

Boston Housing, Random Forest, normalized nonconformity function, ϵ = 0.1
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Validity and efficiency



Validity and efficiency

Conformal predictors are subject to two desiderata
Validity — coherence between ϵ and error rate
Efficiency — size of prediction regions (i.e. informativeness)

Conformal predictors are automatically valid
Efficiency depends on the nonconformity function (and thus the underlying model)

Confidence-efficiency trade-off
The more confidence we require in a prediction, the larger the prediction region will be
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Validity and efficiency

ϵ errors size
0.01 0.006 38.31
0.05 0.040 16.90
0.10 0.089 11.46
0.20 0.191 7.562

Table 1: Boston 10x10 RF CV

ϵ errors size
0.01 0.011 2.347
0.05 0.055 1.052
0.10 0.100 0.930
0.20 0.202 0.804

Table 2: Iris 10x10 RF CV
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Validity and efficiency

Digits (classification), Random Forest, 10x10 CV
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Validity and efficiency

Diabetes (regression), Random Forest, 10x10 CV
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Validity and efficiency

Empirical validity is measured by observing the error rate of a conformal predictor.

Efficiency can be measured in many different ways4.
Examples — regression

• Average size of prediction interval

Examples — classification

• Average number of classes per prediction (AvgC)
• Rate of predictions containing a single class (OneC)
• Average p-value

4V. Vovk, V. Fedorova, I. Nouretdinov, and A. Gammerman, “Criteria of efficiency for conformal prediction,” 2014
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Considerations and modifications



Conditional conformal prediction

Conformal predictors are, by default, unconditional
Their guaranteed error rate applies to the entire test set.

• Difficult patterns (e.g. minority class) may see a greater error rate than expected
• Easy patterns (e.g. majority class) may see a smaller error rate than expected

Example — Iris data set

• One linearly separable class (easy)
• Two linearly non-separable classes (difficult)

55



Conditional conformal prediction
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Conditional conformal prediction

Conditional conformal predictors5 help solve this by
Dividing the problem space into several disjoint subspaces

• e.g. let each class represent a subspace, or
• define subspace based on some input variable(s) (age, gender, etc.)

Guaranteeing an error rate at most ϵ for each subspace

5V. Vovk, “Conditional validity of inductive conformal predictors,” Journal of Machine Learning Research -
Proceedings Track, vol. 25, pp. 475–490, 2012
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Conditional conformal prediction

Define a mapping function K(zi) = κi

Examples

K(zi) = yi (1)

K(zi) =


1 if xi,1 < 50
2 if 50 ≤ xi,1 < 100
3 otherwise

(2)

Conditional p-value

pỹi =
|{zj ∈ Zc : αj > αỹi } ∧ K(zi) = K(zj)|

|K(zi) = K(zj)|+ 1 + θ
|{zj ∈ Zc : αj = αỹi } ∧ K(zi) = K(zj)|

|K(zi) = K(zj)|+ 1 , θ ∼ U[0, 1]
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Conditional conformal prediction
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Choosing a calibration set size

The calibration set
Inductive conformal predictors need some data set aside for calibration? — How much?

25% ∼ 33% are common choices, and provide a good balance between underlying model
performance and calibration accuracy6.

Alternatives
Bagged ensembles can use out-of-bag examples for calibration7 8.

6H. Linusson, U. Johansson, H. Boström, and T. Löfström, “Efficiency comparison of unstable transductive and
inductive conformal classifiers,” in Artificial Intelligence Applications and Innovations. Springer, 2014, pp.
261–270
7U. Johansson, H. Boström, T. Löfström, and H. Linusson, “Regression conformal prediction with random forests,”
Machine Learning, vol. 97, no. 1-2, pp. 155–176, 2014
8H. Boström, H. Linusson, T. Löfström, and U. Johansson, “Accelerating difficulty estimation for conformal
regression forests,” Annals of Mathematics and Artificial Intelligence, pp. 1–20, 2017
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Choosing a calibration set size

The calibration set cont.
For an inductive conformal predictor to be exactly valid, it requires exactly kϵ−1 − 1
calibration instances.

• Otherwise, discretization errors come into play
• (Rendering the conformal predictor conservatively valid)

• Of particular importance when calibration set is small
• e.g. when using conditional conformal prediction

Alternatives
Interpolation of p-values can alleviate this problem.9 10

9L. Carlsson, E. Ahlberg, H. Boström, U. Johansson, and H. Linusson, “Modifications to p-values of conformal
predictors,” in Statistical Learning and Data Sciences. Springer, 2015, pp. 251–259
10U. Johansson, E. Ahlberg, H. Boström, L. Carlsson, H. Linusson, and C. Sönströd, “Handling small calibration sets
in mondrian inductive conformal regressors,” in Statistical Learning and Data Sciences. Springer, 2015, pp.
271–280
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Conformal classification - a
critical look



The problem with conformal classification

Counter-intuitive?

• We must be very careful when interpreting conformal classifiers.
• We will make exactly ϵ errors in the long run.
• An error is when the correct label is not in the predicted label set.
• With this in mind, the guarantee really only applies apriori, i.e., once we have seen a
specific prediction, we can not say that the probability for that prediction to be
wrong is ϵ.

• As an example, consider a two-class problem. Here a number of instances are likely
to get prediction sets containing both classes, meaning that these instances cannot
be erroneous.

• Thus, all errors must be made on the remaining singleton predictions.
• So, once we have observed a singleton prediction, the probability for that being
incorrect is most likely much higher than ϵ.

• It must be noted that this “problem” does not exist in conformal regression.
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Venn predictors



Probabilistic prediction

Introduction

• Many classifiers are able to output not only the predicted class label, but also a
probability distribution over the possible classes.

• Naturally, all probabilistic prediction requires that the probability estimates are
well-calibrated, i.e., the predicted class probabilities must reflect the true, underlying
probabilities.

• If this is not the case, the probabilistic predictions actually become misleading.
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Probabilistic prediction

Calibration

• In probabilistic prediction, the task is to predict the probability distribution of the
label, given the training set and the test object.

• The goal is to obtain a valid predictor.
• In general, validity means that the probability distributions from the predictor must
perform well against statistical tests based on subsequent observation of the labels.

• We are interested in calibration: p(cj | pcj) = pcj , where pcj is the probability estimate
for class j.
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Platt scaling

Platt scaling11 was originally introduced as a method for calibrating support-vector
machines. It works by finding the parameters of a sigmoid function maximizing the
likelihood of a calibration set. The function is

p̂(c | s) = 1
1+ eAs+B , (3)

where p̂(c | s) gives the probability that an example belongs to class c, given that it has
obtained the score s, and where A and B are parameters of the function found by
gradient descent search.

11J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods,” in Advances in Large Margin Classifiers. MIT Press, 1999, pp. 61–74
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Isotonic regression

Isotonic regression12 is a calibration method that can be regarded as a general form of
binning, not requiring a predetermined number of bins.

The calibration function, which is assumed to be isotonic, i.e., non-decreasing, is a
step-wise regression function, which can be learned by an algorithm known as the
pair-adjacent violators algorithm.

The algorithm outputs a function that for each input probability interval returns the
fraction of positive examples in the calibration set in that interval.

12B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates from decision trees and naive Bayesian
classifiers,” in Proc. 18th International Conference on Machine Learning, 2001, pp. 609–616
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Venn predictors

Venn predictors13, are multi-probabilistic predictors with proven validity properties.

Venn predictors was originally suggested in a transductive setting, but here we present
the inductive variant:

To construct an inductive Venn predictor, the available labeled training examples
({(x1, y1), . . . , (xl, yl)}) are split into two parts, the proper training set
({(x1, y1), . . . , (xq, yq)}), used to train an underlying model, and a calibration set
({(xq+1, yq+1), . . . , (xl, yl)}) used to estimate label probabilities for each new test example.

When presented with a new test object xl+1, the aim of Venn prediction is to estimate the
probability that yl+1 = Yj, for each Yj in the set of possible labels Yj ∈ {Y1, . . . , Yc}.

13V. Vovk, G. Shafer, and I. Nouretdinov, “Self-calibrating probability forecasting,” in Advances in Neural
Information Processing Systems, 2004, pp. 1133–1140
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Venn predictors

The key idea of Venn prediction is to divide all calibration examples into a number of k
categories and use the relative frequency of label Yj ∈ {Y1, . . . , Yc} in each category to
estimate label probabilities for test instances falling into that category.

The categories are defined using a Venn taxonomy and every taxonomy leads to a
different Venn predictor.

Typically, the taxonomy is based on the underlying model, trained on the proper training
set, and for each calibration and test object xi, the output of this model is used to assign
(xi, yi) into one of the categories.

One basic Venn taxonomy, which can be used with every kind of classification model,
simply puts all examples predicted with the same label into the same category.
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Venn predictors

For test instances, the category is first determined using the underlying model, in an
identical way as for the calibration instances. Then, the label frequencies of the
calibration instances in that category are used to calculate the estimated label
probabilities.

As in conformal prediction, the test instance zl+1 is included in this calculation. However,
since the true label yl+1 is not known for the test object xl+1, all possible labels
Yj ∈ {Y1, . . . , Yc} are used to create a set of label probability distributions.
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Venn predictors

Instead of dealing directly with these distributions, the lower L(Yj) and upper U(Yj)
probability estimates for each label Yj are often used.

Let k be the category assigned to the test object xl+1 by the Venn taxonomy, and Zk be the
set of calibration instances belonging to category k. Then the lower and upper probability
estimates are defined by:

L(Yj) =
∣∣{(xm, ym) ∈ Zk | ym = Yj}

∣∣
|Zk|+ 1 (4)

and:
U(Yj) =

∣∣{(xm, ym) ∈ Zk | ym = Yj}
∣∣+ 1

|Zk|+ 1 (5)
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Venn predictors

In order to make a prediction ŷl+1 for xl+1 using the lower and upper probability
estimates, the following procedure is often employed:

ŷl+1 = max
Yj∈{Y1,...,Yc}

L(Yj) (6)

The output of a Venn predictor is the above prediction ŷl+1 together with the probability
interval:

[L(ŷl+1),U(ŷl+1)] (7)
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Motivating Example Revisited

How good is your prediction?
You want to estimate the risk of cancer recurrence in patient xk+1
To your disposal, you have:

1. A set of historical observations (x1, y1), . . . , (xk, yk)
• xi describes a patient by age, tumor size, etc
• yi is a measurement of cancer recurrence in patient xi

2. Some machine learning (classification or regression) algorithm
3. Conformal prediction
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Motivating Example Revisited

import pandas as pd

breast_cancer = pd.read_csv('./data/breast-cancer.csv')

# proper training set
x_train = breast_cancer.values[:-100, :-1]
y_train = breast_cancer.values[:-100, -1]

# calibration set
x_cal = breast_cancer.values[-100:-1, :-1]
y_cal = breast_cancer.values[-100:-1, -1]

# (x_k+1, y_k+1)
x_test = breast_cancer.values[-1, :-1]
y_test = breast_cancer.values[-1, -1]

# Omitted: convert y_train, y_cal, y_test to numeric
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Motivating Example Revisited

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from nonconformist.icp import IcpClassifier
from nonconformist.nc import NcFactory

knn = KNeighborsClassifier(n_neighbors=5)
nc = NcFactory.create_nc(knn)
icp = IcpClassifier(nc)

icp.fit(x_train, y_train)
icp.calibrate(x_cal, y_cal)

print(icp.predict(np.array([x_test]), significance=0.05))

[[ True False ]]
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Nonconformist

Installation options:

• git clone http://github.com/donlnz/nonconformist
• pip install nonconformist

Nonconformist supports:

• Conformal classification (inductive)
• Conformal regression (inductive)
• Mondrian (e.g., class-conditional) models
• Normalization
• Aggregated conformal predictors (≈ icp ensembles)
• Out-of-bag calibration
• Plug-and-play using sklearn
• User extensions

Questions, suggestions, feedback, contributions, etc.?
henrik.linusson@hb.se
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Other scenarios

Other scenarios for conformal prediction

• Anomaly detection with guaranteed maximum false positive rates.14

• Concept drift detection / i.i.d. checking with maximum false positive rates.15

• Rule exctraction with guaranteed fidelity.16

• Semi-supervised learning.17

14R. Laxhammar and G. Falkman, “Conformal prediction for distribution-independent anomaly detection in
streaming vessel data,” in Proceedings of the First International Workshop on Novel Data Stream Pattern Mining
Techniques. ACM, 2010, pp. 47–55
15V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk, “Plug-in martingales for testing exchangeability
on-line,” in 29th International Conference on Machine Learning, 2012
16U. Johansson, R. König, H. Linusson, T. Löfström, and H. Boström, “Rule extraction with guaranteed fidelity,” in
Artificial Intelligence Applications and Innovations. Springer, 2014, pp. 281–290
17X. Zhu, F.-M. Schleif, and B. Hammer, “Semi-supervised vector quantization for proximity data,” in Proc. of
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN
2013), Louvain-La-Neuve, Belgium, 2013, pp. 89–94
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Research topics

Nonconformity functions and underlying models

• H. Papadopoulos, V. Vovk, and A. Gammerman, “Regression conformal prediction with
nearest neighbours,” Journal of Artificial Intelligence Research, vol. 40, no. 1, pp.
815–840, 2011

• U. Johansson, H. Boström, and T. Löfström, “Conformal prediction using decision
trees,” in International Conference Data Mining (ICDM). IEEE, 2013

• H. Papadopoulos, “Inductive conformal prediction: Theory and application to neural
networks,” Tools in Artificial Intelligence, vol. 18, pp. 315–330, 2008

• U. Johansson, H. Boström, T. Löfström, and H. Linusson, “Regression conformal
prediction with random forests,” Machine Learning, vol. 97, no. 1-2, pp. 155–176, 2014

• U. Johansson, H. Linusson, T. Löfström, and H. Boström, “Interpretable regression
trees using conformal prediction,” Expert Syst. Appl., vol. 97, pp. 394–404, 2018
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Research topics

Combined conformal predictors

• V. Vovk, “Cross-conformal predictors,” Annals of Mathematics and Artificial
Intelligence, pp. 1–20, 2013

• L. Carlsson, M. Eklund, and U. Norinder, “Aggregated conformal prediction,” in Artificial
Intelligence Applications and Innovations. Springer, 2014, pp. 231–240

• H. Papadopoulos, “Cross-conformal prediction with ridge regression,” in Statistical
Learning and Data Sciences. Springer, 2015, pp. 260–270

Not (yet) proven valid
But seems to be working well in practice.
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Research topics

Application domains

• A. Lambrou, H. Papadopoulos, E. Kyriacou, C. S. Pattichis, M. S. Pattichis,
A. Gammerman, and A. Nicolaides, “Assessment of stroke risk based on
morphological ultrasound image analysis with conformal prediction,” in Artificial
Intelligence Applications and Innovations. Springer, 2010, pp. 146–153

• D. Devetyarov, I. Nouretdinov, B. Burford, S. Camuzeaux, A. Gentry-Maharaj, A. Tiss,
C. Smith, Z. Luo, A. Chervonenkis, R. Hallett et al., “Conformal predictors in early
diagnostics of ovarian and breast cancers,” Progress in Artificial Intelligence, vol. 1,
no. 3, pp. 245–257, 2012

• M. Eklund, U. Norinder, S. Boyer, and L. Carlsson, “The application of conformal
prediction to the drug discovery process,” Annals of Mathematics and Artificial
Intelligence, vol. 74, no. 1-2, pp. 117–132, 2015
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Research topics

Application domains

• I. Nouretdinov, S. G. Costafreda, A. Gammerman, A. Chervonenkis, V. Vovk, V. Vapnik,
and C. H. Fu, “Machine learning classification with confidence: application of
transductive conformal predictors to mri-based diagnostic and prognostic markers in
depression,” Neuroimage, vol. 56, no. 2, pp. 809–813, 2011

• J. Vega, A. Murari, S. Dormido-Canto, R. Moreno, A. Pereira, A. Acero, and J.-E.
Contributors, “Adaptive high learning rate probabilistic disruption predictors from
scratch for the next generation of tokamaks,” Nuclear Fusion, vol. 54, no. 12, p. 123001,
2014
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Research topics

Venn predictors

• H. Papadopoulos, “Reliable probabilistic classification with neural networks,”
Neurocomputing, vol. 107, no. Supplement C, pp. 59 – 68, 2013

• A. Lambrou, I. Nouretdinov, and H. Papadopoulos, “Inductive venn prediction,” Annals
of Mathematics and Artificial Intelligence, vol. 74, no. 1, pp. 181–201, 2015

• V. Vovk and I. Petej, “Venn-abers predictors,” arXiv preprint arXiv:1211.0025, 2012
• U. Johansson, T. Löfström, H. Sundell, H. Linusson, A. Gidenstam, and H. Boström,
“Venn predictors for well-calibrated probability estimation trees,” in Seventh
Symposium on Conformal and Probabilistic Prediction with Applications, ser.
Proceedings of Machine Learning Research, vol. 91. PMLR, 2018, pp. 1–12
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Suggested reading

Suggested reading

• V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a random world.
Springer, 2005

• www.alrw.net
• G. Shafer and V. Vovk, “A tutorial on conformal prediction,” The Journal of Machine
Learning Research, vol. 9, pp. 371–421, 2008

• A. Gammerman, V. Vovk, and V. Vapnik, “Learning by transduction,” in Proceedings of
the Fourteenth conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1998, pp. 148–155

• A. Gammerman and V. Vovk, “Hedging predictions in machine learning the second
computer journal lecture,” The Computer Journal, vol. 50, no. 2, pp. 151–163, 2007
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Suggested reading

Suggested reading cont.

• H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman, “Inductive confidence
machines for regression,” in Machine Learning: ECML 2002. Springer, 2002, pp.
345–356

• H. Papadopoulos and H. Haralambous, “Reliable prediction intervals with regression
neural networks,” Neural Networks, vol. 24, no. 8, pp. 842–851, 2011

• U. Johansson, H. Boström, T. Löfström, and H. Linusson, “Regression conformal
prediction with random forests,” Machine Learning, vol. 97, no. 1-2, pp. 155–176, 2014
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